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Summary: A method for cis- and rrans-annulations to 13-cycloalkadienes was developed, which is based on a 
palladium-catalyzed 1,4-chloroacetoxylation and subsequent stereocontrolled nucleophilic substitution of the 
chloro and acetoxy groups. 

We have recently developed methodology for the addition of nucleophiles to conjugated dienes,2” which 

is based on the palladium-catalyzed 1,4-chloroacetoxylation and subsequent stereocontrolled substitution of the 

chloro and acetoxy groups (Scheme 1). The approach allows full control of the 1,4-relative stereochemistry in 

both cyclic and acyclic systems. Furthermore, the metal-catalyzed nucleophilic substitution of the leaving groups 

(AcO- and Cl-) can be directed towards y-substitution (SN2’), leading to useful 1,2-functionalizations.3g*k5 

Scheme 1 

Annulation reactions of rings leading to fused-ring systems constitute a useful type of reaction in organic 

synthesis.6 An important aspect of such annulations is the control of stereochemistry at the bridgehead carbons. 

For example, Robinson annulation with subsequent reduction, normally leads to the trans-fused rings. We have 

been engaged for some time in a project with the aim of developing cis- and tranr-annulations to 

1,3-cycloalkadienes using the chloroacetoxylation approach. The principle is shown in Scheme 2. In this 

communication we report our results obtained so far on these stereocontrolled annulation reactions.‘,’ 

Scheme 2 

In the approach according to Scheme 2 we first tried to use non-stabilized enolates as nucleophiles in the 

palladium-catalyzed cyclization step. 8 It has been reported in the literature that intermolecular palladium- 

catalyzed alkylations of allylic acetates with non-stabilized enolates proceed under mild conditions and with 

retention of configuration.9 Since we were not able to obtain the desired cyclizations with non-stabilized 

enolate$ we turned our attention to their stabilized counterparts. The use of stabilized enolates in palladium- 
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catalyzed substitution of allylic acetates, including cyclizations, is well documented in the literature.lO,ll 

1,4-Functionalizations of 1,3cyclohexadiene to cis- and trans-2 were done according to ref. 2. The 

acetoacetate chain was introduced using the Boeekman P-keto ester cation equivalent, 6-chloromethyl- 

2,2-dimethyl-1,3-dioxen-4-one (S), l2 followed by thermolysis in the presence of methanol (Scheme 3). 

Scheme 3 (E = co+) 

cis-4 (>96% cis) 

(5). Nat, THF - DMF, 25 ‘C. b. MeOH, toluene, 110 ‘C. 13 h c. NaH, Pd(db+, pPh3, 65 ‘C, 6 _ 10 h. 

Palladium-catalyzed cyclization of cis- and tram-3, thus obtained, was accomplished by using Pd(dba),13 (dba = 

dibenzylideneacetone) in the presence of triphenylphosphine as the catalyst, which generates a Pd(O)phosphine 

complex in situ. The cyclization of cis-3 was highly stereospecific and afforded cis-4, which was found to be in 

an equilibrium with its enol form. l4 The corresponding cyclization of tram-3 was not stereospecific and gave the 

expected product tram-4 and cis-4 in a 1:l ratio. For the rranr-fused product the enol could not be detected by 

spectroscopic methods. The stereochemistry of cis- and frans-4 was determined from the ‘H NMR (cis-4: J, = 5 

Hz, JbE = 12.5 Hz; tram-4: Jab = 11.5 Hz, Jbe = 12.5 Hz). The reason for the loss of stereospecificity in the 

cyclization of tram-3 is not clear. In a control experiment the starting TTli~bXid was recovered after 43% 

conversion and shown by ‘H NMR to be ~-95% rrun.~.~~ 

The cis- and truns-annulations to 1,3-cycioheptadiene were performeLi in an analogous manner (Scheme 

4). Again, by applying the dual stereoselectivity offered by the chloroacetoxylation approach, cis- and tram-6 

Scheme 4 (E = c02~e) 

cis-6 cis-7 (>98% cis) 

trans-6 trans-7 (>97% frans) 

8. l,4ciS-chlOfOe~tO~letiOfl, (ref 28 74%) b. NaCHE2, Pd(OAc)2, PPh3 (ref lit, 95%). c. NaCHE2, CH3CN, 

reflux. 16 h (68%) d. (i)NaH, 5, Nal, THF-DMF. 25 ‘C (ii) MeOH, bluene. 110 “C, 24 h, (overall yieM for d 

46WcisL 36% Wms)). e. Pd(dW2 or PdPWp, PPh3, NaH. THF, 65 ‘C, 18 20 h (70 75%) 
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were prepared in high stereochemical purity (Z 98%). Palladium-catalyzed cyclization of compounds cis- and 

trans-6 proceeded with high stereospecificity in each case. Thus, cis-6 gave cis-7 in 75% yield and trans-6 

produced tram-7 in 70% yield. The stereochemistry of the products was determined from their ‘II NMR spectra 

(cis-7: Jab = 3.5 Hz, Jbc = 13.1 Hz; tranr-7: Jab = 9.4 Hz, Jb = 12.2 Hz). It is interesting to note that the 

carbomethoxy group a to the keto group is in an equatorial position in all of the cyclized compounds. This is 

most likely a result of the keto-enol equilibria leading to the thermodynamically more stable configuration. 

Studies on decarboxylation of the cyclized products showed that it is possible to obtain a selective 

decarbomethoxylation. Thus, reaction of cis-4 and cis-7 with water in hot dimethylsulfoxide @MS0)16 afforded 

c&l and cis-9 respectively where only the carbomethoxy group a to the keto group was lost. 

cis4 
H2C%DMSO 

15h 
(E = COgbk3) 

150 k, 

ww 0 

cisS 

cis-7 
H2CLDF.M 

> (E =co2hkj 

140%, 2 h 

ww 
0 

cis-9 

Similar cis- and frans-annulation reactions involving palladium-catalyzed reactions have recently been 

reported.11”bv17 In a closely related study the chloroacetoxylation methodology was applied to obtain 

stereocontrolled annulations via an intramolecular metalloene reaction. l7 The cyclization in the latter study 

occurred with inversion of configuration whereas the cyclization presented here occurs with retention. 
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